Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p1e10OLD Structured version   Visualization version   GIF version

Theorem 9p1e10OLD 11036
 Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) Obsolete version of 9p1e10 11372 as of 8-Sep-2021. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
9p1e10OLD (9 + 1) = 10

Proof of Theorem 9p1e10OLD
StepHypRef Expression
1 df-10OLD 10964 . 2 10 = (9 + 1)
21eqcomi 2619 1 (9 + 1) = 10
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  (class class class)co 6549  1c1 9816   + caddc 9818  9c9 10954  10c10 10955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-cleq 2603  df-10OLD 10964 This theorem is referenced by:  dfdecOLD  11371  declecOLD  11420  9p1e10bOLD  11432
 Copyright terms: Public domain W3C validator