MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orcoma Structured version   Visualization version   GIF version

Theorem 3orcoma 1039
Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
3orcoma ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))

Proof of Theorem 3orcoma
StepHypRef Expression
1 or12 544 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ (𝜓 ∨ (𝜑𝜒)))
2 3orass 1034 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
3 3orass 1034 . 2 ((𝜓𝜑𝜒) ↔ (𝜓 ∨ (𝜑𝜒)))
41, 2, 33bitr4i 291 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382  w3o 1030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384  df-3or 1032
This theorem is referenced by:  outpasch  25447  eliccioo  28970
  Copyright terms: Public domain W3C validator