Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > or12 | Structured version Visualization version GIF version |
Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
or12 | ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.5 543 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
2 | pm1.5 543 | . 2 ⊢ ((𝜓 ∨ (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | impbii 198 | 1 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 |
This theorem is referenced by: orass 545 or32 548 or4 549 3orcoma 1039 sotrieq 4986 ordzsl 6937 plydivex 23856 socnv 30908 nosepon 31066 |
Copyright terms: Public domain | W3C validator |