Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pm13.193VD Structured version   Visualization version   GIF version

Theorem 2pm13.193VD 38161
Description: Virtual deduction proof of 2pm13.193 37789. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 37789 is 2pm13.193VD 38161 without virtual deductions and was automatically derived from 2pm13.193VD 38161. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
4:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
5:3,4: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
6:5: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
7:6: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
8:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
9:7,8: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
10:9: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
11:10: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   )
12:2,11: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
13:12: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
17:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    )
18:16,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑𝑦 = 𝑣)   )
19:18: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
20:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
21:19: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
22:20,21: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
23:22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
24:23: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
25:15,24: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
26:25: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
qed:13,26: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Assertion
Ref Expression
2pm13.193VD (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))

Proof of Theorem 2pm13.193VD
StepHypRef Expression
1 idn1 37811 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2 simpl 472 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
31, 2e1a 37873 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
4 simpl 472 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
53, 4e1a 37873 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
6 simpr 476 . . . . . . . . . . 11 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
71, 6e1a 37873 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8 pm3.21 463 . . . . . . . . . 10 (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)))
95, 7, 8e11 37934 . . . . . . . . 9 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
10 sbequ2 1869 . . . . . . . . . 10 (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑣 / 𝑦]𝜑))
1110imdistanri 723 . . . . . . . . 9 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢) → ([𝑣 / 𝑦]𝜑𝑥 = 𝑢))
129, 11e1a 37873 . . . . . . . 8 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
13 simpl 472 . . . . . . . 8 (([𝑣 / 𝑦]𝜑𝑥 = 𝑢) → [𝑣 / 𝑦]𝜑)
1412, 13e1a 37873 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
15 simpr 476 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
163, 15e1a 37873 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
17 pm3.2 462 . . . . . . 7 ([𝑣 / 𝑦]𝜑 → (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)))
1814, 16, 17e11 37934 . . . . . 6 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
19 sbequ2 1869 . . . . . . 7 (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑𝜑))
2019imdistanri 723 . . . . . 6 (([𝑣 / 𝑦]𝜑𝑦 = 𝑣) → (𝜑𝑦 = 𝑣))
2118, 20e1a 37873 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
22 simpl 472 . . . . 5 ((𝜑𝑦 = 𝑣) → 𝜑)
2321, 22e1a 37873 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝜑   )
24 pm3.2 462 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝜑 → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
253, 23, 24e11 37934 . . 3 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
2625in1 37808 . 2 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
27 idn1 37811 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
28 simpl 472 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
2927, 28e1a 37873 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3029, 4e1a 37873 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
3129, 15e1a 37873 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
32 simpr 476 . . . . . . . . . . 11 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → 𝜑)
3327, 32e1a 37873 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑   )
34 pm3.21 463 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝜑 → (𝜑𝑦 = 𝑣)))
3531, 33, 34e11 37934 . . . . . . . . 9 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
36 sbequ1 2096 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝜑 → [𝑣 / 𝑦]𝜑))
3736imdistanri 723 . . . . . . . . 9 ((𝜑𝑦 = 𝑣) → ([𝑣 / 𝑦]𝜑𝑦 = 𝑣))
3835, 37e1a 37873 . . . . . . . 8 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
39 simpl 472 . . . . . . . 8 (([𝑣 / 𝑦]𝜑𝑦 = 𝑣) → [𝑣 / 𝑦]𝜑)
4038, 39e1a 37873 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
41 pm3.21 463 . . . . . . 7 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)))
4230, 40, 41e11 37934 . . . . . 6 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
43 sbequ1 2096 . . . . . . 7 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
4443imdistanri 723 . . . . . 6 (([𝑣 / 𝑦]𝜑𝑥 = 𝑢) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢))
4542, 44e1a 37873 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
46 simpl 472 . . . . 5 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
4745, 46e1a 37873 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
48 pm3.2 462 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
4929, 47, 48e11 37934 . . 3 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
5049in1 37808 . 2 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
5126, 50impbii 198 1 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-sb 1868  df-vd1 37807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator