ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel GIF version

Theorem ssrel 4428
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrel (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ssrel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 2939 . . 3 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1755 . 2 (𝐴𝐵 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 eleq1 2100 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
4 eleq1 2100 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
53, 4imbi12d 223 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝐴𝑧𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
65biimprcd 149 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
762alimi 1345 . . . . . . . 8 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
8 19.23vv 1764 . . . . . . . 8 (∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
97, 8sylib 127 . . . . . . 7 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
109com23 72 . . . . . 6 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧𝐴 → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝐵)))
1110a2d 23 . . . . 5 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ((𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝐴𝑧𝐵)))
1211alimdv 1759 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝐴𝑧𝐵)))
13 df-rel 4352 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
14 dfss2 2934 . . . . 5 (𝐴 ⊆ (V × V) ↔ ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
15 elvv 4402 . . . . . . 7 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1615imbi2i 215 . . . . . 6 ((𝑧𝐴𝑧 ∈ (V × V)) ↔ (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
1716albii 1359 . . . . 5 (∀𝑧(𝑧𝐴𝑧 ∈ (V × V)) ↔ ∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
1813, 14, 173bitri 195 . . . 4 (Rel 𝐴 ↔ ∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
19 dfss2 2934 . . . 4 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2012, 18, 193imtr4g 194 . . 3 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴𝐴𝐵))
2120com12 27 . 2 (Rel 𝐴 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴𝐵))
222, 21impbid2 131 1 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1241   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  wss 2917  cop 3378   × cxp 4343  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  eqrel  4429  relssi  4431  relssdv  4432  cotr  4706  cnvsym  4708  intasym  4709  intirr  4711  codir  4713  qfto  4714
  Copyright terms: Public domain W3C validator