HomeHome Intuitionistic Logic Explorer
Theorem List (p. 45 of 102)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4401-4500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxpun 4401 The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
 
Theoremelvv 4402* Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremelvvv 4403* Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
(𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
 
Theoremelvvuni 4404 An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (V × V) → 𝐴𝐴)
 
Theoremmosubopt 4405* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
(∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
 
Theoremmosubop 4406* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
∃*𝑥𝜑       ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
 
Theorembrinxp2 4407 Intersection of binary relation with cross product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
 
Theorembrinxp 4408 Intersection of binary relation with cross product. (Contributed by NM, 9-Mar-1997.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
 
Theorempoinxp 4409 Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
 
Theoremsoinxp 4410 Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
 
Theoremseinxp 4411 Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
(𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)
 
Theoremposng 4412 Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 
Theoremsosng 4413 Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
((Rel 𝑅𝐴 ∈ V) → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 
Theoremopabssxp 4414* An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 
Theorembrab2ga 4415* The law of concretion for a binary relation. See brab2a 4393 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}       (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 
Theoremoptocl 4416* Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
𝐷 = (𝐵 × 𝐶)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   ((𝑥𝐵𝑦𝐶) → 𝜑)       (𝐴𝐷𝜓)
 
Theorem2optocl 4417* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
𝑅 = (𝐶 × 𝐷)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))    &   (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)       ((𝐴𝑅𝐵𝑅) → 𝜒)
 
Theorem3optocl 4418* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
𝑅 = (𝐷 × 𝐹)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))    &   (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))    &   (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)       ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
 
Theoremopbrop 4419* Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
(((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ 𝜓))
 
Theorem0xp 4420 The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
(∅ × 𝐴) = ∅
 
Theoremcsbxpg 4421 Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝐷𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
 
Theoremreleq 4422 Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
 
Theoremreleqi 4423 Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
𝐴 = 𝐵       (Rel 𝐴 ↔ Rel 𝐵)
 
Theoremreleqd 4424 Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))
 
Theoremnfrel 4425 Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥Rel 𝐴
 
Theoremsbcrel 4426 Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
(𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))
 
Theoremrelss 4427 Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
(𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
 
Theoremssrel 4428* A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
 
Theoremeqrel 4429* Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
 
Theoremssrel2 4430* A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4428 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
(𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
 
Theoremrelssi 4431* Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Rel 𝐴    &   (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)       𝐴𝐵
 
Theoremrelssdv 4432* Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
(𝜑 → Rel 𝐴)    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (𝜑𝐴𝐵)
 
Theoremeqrelriv 4433* Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)       ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
 
Theoremeqrelriiv 4434* Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Rel 𝐴    &   Rel 𝐵    &   (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)       𝐴 = 𝐵
 
Theoremeqbrriv 4435* Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Rel 𝐴    &   Rel 𝐵    &   (𝑥𝐴𝑦𝑥𝐵𝑦)       𝐴 = 𝐵
 
Theoremeqrelrdv 4436* Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Rel 𝐴    &   Rel 𝐵    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqbrrdv 4437* Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑 → Rel 𝐴)    &   (𝜑 → Rel 𝐵)    &   (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))       (𝜑𝐴 = 𝐵)
 
Theoremeqbrrdiv 4438* Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Rel 𝐴    &   Rel 𝐵    &   (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))       (𝜑𝐴 = 𝐵)
 
Theoremeqrelrdv2 4439* A version of eqrelrdv 4436. (Contributed by Rodolfo Medina, 10-Oct-2010.)
(𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
 
Theoremssrelrel 4440* A subclass relationship determined by ordered triples. Use relrelss 4844 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
 
Theoremeqrelrel 4441* Extensionality principle for ordered triples, analogous to eqrel 4429. Use relrelss 4844 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
 
Theoremelrel 4442* A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremrelsn 4443 A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
𝐴 ∈ V       (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
 
Theoremrelsnop 4444 A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       Rel {⟨𝐴, 𝐵⟩}
 
Theoremxpss12 4445 Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
 
Theoremxpss 4446 A cross product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
(𝐴 × 𝐵) ⊆ (V × V)
 
Theoremrelxp 4447 A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Rel (𝐴 × 𝐵)
 
Theoremxpss1 4448 Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
(𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
 
Theoremxpss2 4449 Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
(𝐴𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵))
 
Theoremxpsspw 4450 A cross product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
(𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
 
Theoremunixpss 4451 The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
(𝐴 × 𝐵) ⊆ (𝐴𝐵)
 
Theoremxpexg 4452 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.)
((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
 
Theoremxpex 4453 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 × 𝐵) ∈ V
 
Theoremrelun 4454 The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
(Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
 
Theoremrelin1 4455 The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
(Rel 𝐴 → Rel (𝐴𝐵))
 
Theoremrelin2 4456 The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
(Rel 𝐵 → Rel (𝐴𝐵))
 
Theoremreldif 4457 A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
(Rel 𝐴 → Rel (𝐴𝐵))
 
Theoremreliun 4458 An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
(Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
 
Theoremreliin 4459 An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
(∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
 
Theoremreluni 4460* The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
(Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
 
Theoremrelint 4461* The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
(∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
 
Theoremrel0 4462 The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Rel ∅
 
Theoremrelopabi 4463 A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       Rel 𝐴
 
Theoremrelopab 4464 A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremreli 4465 The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Rel I
 
Theoremrele 4466 The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Rel E
 
Theoremopabid2 4467* A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
(Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
 
Theoreminopab 4468* Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
Theoremdifopab 4469* The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoreminxp 4470 The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
 
Theoremxpindi 4471 Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))
 
Theoremxpindir 4472 Distributive law for cross product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))
 
Theoremxpiindim 4473* Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
(∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
 
Theoremxpriindim 4474* Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
(∃𝑦 𝑦𝐴 → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
 
Theoremeliunxp 4475* Membership in a union of cross products. Analogue of elxp 4362 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
 
Theoremopeliunxp2 4476* Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
(𝑥 = 𝐶𝐵 = 𝐸)       (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
 
Theoremraliunxp 4477* Write a double restricted quantification as one universal quantifier. In this version of ralxp 4479, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexiunxp 4478* Write a double restricted quantification as one universal quantifier. In this version of rexxp 4480, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremralxp 4479* Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexxp 4480* Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremdjussxp 4481* Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
 
Theoremralxpf 4482* Version of ralxp 4479 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑧𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexxpf 4483* Version of rexxp 4480 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑧𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremiunxpf 4484* Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
𝑦𝐶    &   𝑧𝐶    &   𝑥𝐷    &   (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)        𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
 
Theoremopabbi2dv 4485* Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2156. (Contributed by NM, 24-Feb-2014.)
Rel 𝐴    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))       (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
 
Theoremrelop 4486* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
𝐴 ∈ V    &   𝐵 ∈ V       (Rel ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))
 
Theoremideqg 4487 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
 
Theoremideq 4488 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
𝐵 ∈ V       (𝐴 I 𝐵𝐴 = 𝐵)
 
Theoremididg 4489 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝑉𝐴 I 𝐴)
 
Theoremissetid 4490 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 ∈ V ↔ 𝐴 I 𝐴)
 
Theoremcoss1 4491 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremcoss2 4492 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremcoeq1 4493 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremcoeq2 4494 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremcoeq1i 4495 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremcoeq2i 4496 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremcoeq1d 4497 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremcoeq2d 4498 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremcoeq12i 4499 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremcoeq12d 4500 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >