HomeHome Intuitionistic Logic Explorer
Theorem List (p. 87 of 102)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8601-8700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrpreap0 8601 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 # 0))
 
Theoremrpcnne0 8602 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
 
Theoremrpcnap0 8603 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
 
Theoremralrp 8604 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
(∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))
 
Theoremrexrp 8605 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
(∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))
 
Theoremrpaddcl 8606 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
 
Theoremrpmulcl 8607 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+)
 
Theoremrpdivcl 8608 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
 
Theoremrpreccl 8609 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
(𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
 
Theoremrphalfcl 8610 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
 
Theoremrpgecl 8611 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
 
Theoremrphalflt 8612 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)
 
Theoremrerpdivcl 8613 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremge0p1rp 8614 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
 
Theoremrpnegap 8615 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))
 
Theorem0nrp 8616 Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
¬ 0 ∈ ℝ+
 
Theoremltsubrp 8617 Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)
 
Theoremltaddrp 8618 Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))
 
Theoremdifrp 8619 Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
 
Theoremelrpd 8620 Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑𝐴 ∈ ℝ+)
 
Theoremnnrpd 8621 A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℝ+)
 
Theoremrpred 8622 A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ∈ ℝ)
 
Theoremrpxrd 8623 A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ∈ ℝ*)
 
Theoremrpcnd 8624 A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ∈ ℂ)
 
Theoremrpgt0d 8625 A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 < 𝐴)
 
Theoremrpge0d 8626 A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 ≤ 𝐴)
 
Theoremrpne0d 8627 A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ≠ 0)
 
Theoremrpap0d 8628 A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 # 0)
 
Theoremrpregt0d 8629 A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 
Theoremrprege0d 8630 A positive real is real and greater or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
 
Theoremrprene0d 8631 A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
 
Theoremrpcnne0d 8632 A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
 
Theoremrpreccld 8633 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (1 / 𝐴) ∈ ℝ+)
 
Theoremrprecred 8634 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremrphalfcld 8635 Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 / 2) ∈ ℝ+)
 
Theoremreclt1d 8636 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
 
Theoremrecgt1d 8637 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (1 < 𝐴 ↔ (1 / 𝐴) < 1))
 
Theoremrpaddcld 8638 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 + 𝐵) ∈ ℝ+)
 
Theoremrpmulcld 8639 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 · 𝐵) ∈ ℝ+)
 
Theoremrpdivcld 8640 Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ+)
 
Theoremltrecd 8641 The reciprocal of both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
 
Theoremlerecd 8642 The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
 
Theoremltrec1d 8643 Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → (1 / 𝐴) < 𝐵)       (𝜑 → (1 / 𝐵) < 𝐴)
 
Theoremlerec2d 8644 Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐴 ≤ (1 / 𝐵))       (𝜑𝐵 ≤ (1 / 𝐴))
 
Theoremlediv2ad 8645 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
 
Theoremltdiv2d 8646 Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
 
Theoremlediv2d 8647 Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
 
Theoremledivdivd 8648 Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))       (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))
 
Theoremdivge1 8649 The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 1 ≤ (𝐵 / 𝐴))
 
Theoremdivlt1lt 8650 A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
 
Theoremdivle1le 8651 A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
 
Theoremledivge1le 8652 If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
 
Theoremge0p1rpd 8653 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝐴 + 1) ∈ ℝ+)
 
Theoremrerpdivcld 8654 Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremltsubrpd 8655 Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵) < 𝐴)
 
Theoremltaddrpd 8656 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑𝐴 < (𝐴 + 𝐵))
 
Theoremltaddrp2d 8657 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑𝐴 < (𝐵 + 𝐴))
 
Theoremltmulgt11d 8658 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (1 < 𝐴𝐵 < (𝐵 · 𝐴)))
 
Theoremltmulgt12d 8659 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (1 < 𝐴𝐵 < (𝐴 · 𝐵)))
 
Theoremgt0divd 8660 Division of a positive number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵)))
 
Theoremge0divd 8661 Division of a nonnegative number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
 
Theoremrpgecld 8662 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵𝐴)       (𝜑𝐴 ∈ ℝ+)
 
Theoremdivge0d 8663 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (𝐴 / 𝐵))
 
Theoremltmul1d 8664 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
 
Theoremltmul2d 8665 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
 
Theoremlemul1d 8666 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
 
Theoremlemul2d 8667 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
 
Theoremltdiv1d 8668 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
 
Theoremlediv1d 8669 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
 
Theoremltmuldivd 8670 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐶) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltmuldiv2d 8671 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐶 · 𝐴) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremlemuldivd 8672 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremlemuldiv2d 8673 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐶 · 𝐴) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremltdivmuld 8674 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
 
Theoremltdivmul2d 8675 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐵 · 𝐶)))
 
Theoremledivmuld 8676 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))
 
Theoremledivmul2d 8677 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 · 𝐶)))
 
Theoremltmul1dd 8678 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶))
 
Theoremltmul2dd 8679 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵))
 
Theoremltdiv1dd 8680 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶))
 
Theoremlediv1dd 8681 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))
 
Theoremlediv12ad 8682 Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
 
Theoremltdiv23d 8683 Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → (𝐴 / 𝐵) < 𝐶)       (𝜑 → (𝐴 / 𝐶) < 𝐵)
 
Theoremlediv23d 8684 Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → (𝐴 / 𝐵) ≤ 𝐶)       (𝜑 → (𝐴 / 𝐶) ≤ 𝐵)
 
Theoremlt2mul2divd 8685 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
 
3.5.2  Infinity and the extended real number system (cont.)
 
Syntaxcxne 8686 Extend class notation to include the negative of an extended real.
class -𝑒𝐴
 
Syntaxcxad 8687 Extend class notation to include addition of extended reals.
class +𝑒
 
Syntaxcxmu 8688 Extend class notation to include multiplication of extended reals.
class ·e
 
Definitiondf-xneg 8689 Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
 
Definitiondf-xadd 8690* Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
+𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
 
Definitiondf-xmul 8691* Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
 
Theorempnfxr 8692 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
+∞ ∈ ℝ*
 
Theorempnfex 8693 Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
+∞ ∈ V
 
Theoremmnfxr 8694 Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
-∞ ∈ ℝ*
 
Theoremltxr 8695 The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
 
Theoremelxr 8696 Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
 
Theorempnfnemnf 8697 Plus and minus infinity are different elements of *. (Contributed by NM, 14-Oct-2005.)
+∞ ≠ -∞
 
Theoremmnfnepnf 8698 Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-∞ ≠ +∞
 
Theoremxrnemnf 8699 An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
 
Theoremxrnepnf 8700 An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >