ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqsn Unicode version

Theorem opeqsn 3989
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqsn.1  |-  A  e. 
_V
opeqsn.2  |-  B  e. 
_V
opeqsn.3  |-  C  e. 
_V
Assertion
Ref Expression
opeqsn  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )

Proof of Theorem opeqsn
StepHypRef Expression
1 opeqsn.1 . . . 4  |-  A  e. 
_V
2 opeqsn.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3548 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43eqeq1i 2047 . 2  |-  ( <. A ,  B >.  =  { C }  <->  { { A } ,  { A ,  B } }  =  { C } )
5 snexgOLD 3935 . . . 4  |-  ( A  e.  _V  ->  { A }  e.  _V )
61, 5ax-mp 7 . . 3  |-  { A }  e.  _V
7 prexgOLD 3946 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
81, 2, 7mp2an 402 . . 3  |-  { A ,  B }  e.  _V
9 opeqsn.3 . . 3  |-  C  e. 
_V
106, 8, 9preqsn 3546 . 2  |-  ( { { A } ,  { A ,  B } }  =  { C } 
<->  ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C
) )
11 eqcom 2042 . . . . 5  |-  ( { A }  =  { A ,  B }  <->  { A ,  B }  =  { A } )
121, 2, 1preqsn 3546 . . . . 5  |-  ( { A ,  B }  =  { A }  <->  ( A  =  B  /\  B  =  A ) )
13 eqcom 2042 . . . . . . 7  |-  ( B  =  A  <->  A  =  B )
1413anbi2i 430 . . . . . 6  |-  ( ( A  =  B  /\  B  =  A )  <->  ( A  =  B  /\  A  =  B )
)
15 anidm 376 . . . . . 6  |-  ( ( A  =  B  /\  A  =  B )  <->  A  =  B )
1614, 15bitri 173 . . . . 5  |-  ( ( A  =  B  /\  B  =  A )  <->  A  =  B )
1711, 12, 163bitri 195 . . . 4  |-  ( { A }  =  { A ,  B }  <->  A  =  B )
1817anbi1i 431 . . 3  |-  ( ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  { A ,  B }  =  C ) )
19 dfsn2 3389 . . . . . . 7  |-  { A }  =  { A ,  A }
20 preq2 3448 . . . . . . 7  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
2119, 20syl5req 2085 . . . . . 6  |-  ( A  =  B  ->  { A ,  B }  =  { A } )
2221eqeq1d 2048 . . . . 5  |-  ( A  =  B  ->  ( { A ,  B }  =  C  <->  { A }  =  C ) )
23 eqcom 2042 . . . . 5  |-  ( { A }  =  C  <-> 
C  =  { A } )
2422, 23syl6bb 185 . . . 4  |-  ( A  =  B  ->  ( { A ,  B }  =  C  <->  C  =  { A } ) )
2524pm5.32i 427 . . 3  |-  ( ( A  =  B  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  C  =  { A } ) )
2618, 25bitri 173 . 2  |-  ( ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  C  =  { A } ) )
274, 10, 263bitri 195 1  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557   {csn 3375   {cpr 3376   <.cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  relop  4486
  Copyright terms: Public domain W3C validator