ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-i12 Unicode version

Axiom ax-i12 1398
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever  z is distinct from  x and  y, and  x  =  y is true, then  x  =  y quantified with  z is also true. In other words,  z is irrelevant to the truth of 
x  =  y. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom has been modified from the original ax-12 1402 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.)

Assertion
Ref Expression
ax-i12  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )

Detailed syntax breakdown of Axiom ax-i12
StepHypRef Expression
1 vz . . . 4  setvar  z
2 vx . . . 4  setvar  x
31, 2weq 1392 . . 3  wff  z  =  x
43, 1wal 1241 . 2  wff  A. z 
z  =  x
5 vy . . . . 5  setvar  y
61, 5weq 1392 . . . 4  wff  z  =  y
76, 1wal 1241 . . 3  wff  A. z 
z  =  y
82, 5weq 1392 . . . . 5  wff  x  =  y
98, 1wal 1241 . . . . 5  wff  A. z  x  =  y
108, 9wi 4 . . . 4  wff  ( x  =  y  ->  A. z  x  =  y )
1110, 1wal 1241 . . 3  wff  A. z
( x  =  y  ->  A. z  x  =  y )
127, 11wo 629 . 2  wff  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
)
134, 12wo 629 1  wff  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff set class
This axiom is referenced by:  ax-12  1402  ax12or  1403  dveeq2  1696  dveeq2or  1697  dvelimALT  1886  dvelimfv  1887
  Copyright terms: Public domain W3C validator