Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcomcom5 GIF version

Theorem wcomcom5 420
 Description: Commutation equivalence. Kalmbach 83 p. 23.
Hypothesis
Ref Expression
wcomcom5.1 C (a , b ) = 1
Assertion
Ref Expression
wcomcom5 C (a, b) = 1

Proof of Theorem wcomcom5
StepHypRef Expression
1 wcomcom5.1 . . . . 5 C (a , b ) = 1
21wcomcom4 417 . . . 4 C (a , b ) = 1
32wdf-c2 384 . . 3 (a ≡ ((a b ) ∪ (a b ))) = 1
4 ax-a1 30 . . . 4 a = a
54bi1 118 . . 3 (aa ) = 1
6 ax-a1 30 . . . . . 6 b = b
76bi1 118 . . . . 5 (bb ) = 1
85, 7w2an 373 . . . 4 ((ab) ≡ (a b )) = 1
9 ax-a1 30 . . . . . 6 b = b
109bi1 118 . . . . 5 (bb ) = 1
115, 10w2an 373 . . . 4 ((ab ) ≡ (a b )) = 1
128, 11w2or 372 . . 3 (((ab) ∪ (ab )) ≡ ((a b ) ∪ (a b ))) = 1
133, 5, 12w3tr1 374 . 2 (a ≡ ((ab) ∪ (ab ))) = 1
1413wdf-c1 383 1 C (a, b) = 1
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   ∪ wo 6   ∩ wa 7  1wt 8   C wcmtr 29 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-cmtr 134 This theorem is referenced by:  wcomdr  421  wcom2an  428  woml6  436  woml7  437
 Copyright terms: Public domain W3C validator