MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndext Structured version   Visualization version   GIF version

Theorem zfcndext 9314
Description: Axiom of Extensionality ax-ext 2590, reproved from conditionless ZFC version and predicate calculus. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.)
Assertion
Ref Expression
zfcndext (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfcndext
StepHypRef Expression
1 axextnd 9292 . 2 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2119.36iv 1892 1 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wcel 1977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-cleq 2603  df-clel 2606  df-nfc 2740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator