Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpun Structured version   Visualization version   GIF version

Theorem xpun 5099
 Description: The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpun ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))

Proof of Theorem xpun
StepHypRef Expression
1 xpundi 5094 . 2 ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴𝐵) × 𝐶) ∪ ((𝐴𝐵) × 𝐷))
2 xpundir 5095 . . 3 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
3 xpundir 5095 . . 3 ((𝐴𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))
42, 3uneq12i 3727 . 2 (((𝐴𝐵) × 𝐶) ∪ ((𝐴𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)))
5 un4 3735 . 2 (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
61, 4, 53eqtri 2636 1 ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∪ cun 3538   × cxp 5036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-opab 4644  df-xp 5044 This theorem is referenced by:  ex-xp  26685
 Copyright terms: Public domain W3C validator