Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xfree2 Structured version   Visualization version   GIF version

Theorem xfree2 28688
Description: A partial converse to 19.9t 2059. (Contributed by Stefan Allan, 21-Dec-2008.)
Assertion
Ref Expression
xfree2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem xfree2
StepHypRef Expression
1 xfree 28687 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑𝜑))
2 eximal 1698 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
32albii 1737 . 2 (∀𝑥(∃𝑥𝜑𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
41, 3bitri 263 1 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696  df-nf 1701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator