Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eximal | Structured version Visualization version GIF version |
Description: A utility theorem. An interesting case is when the same formula is substituted for both 𝜑 and 𝜓, since then both implications express a type of non-freeness. See also alimex 1748. (Contributed by BJ, 12-May-2019.) |
Ref | Expression |
---|---|
eximal | ⊢ ((∃𝑥𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1696 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | imbi1i 338 | . 2 ⊢ ((∃𝑥𝜑 → 𝜓) ↔ (¬ ∀𝑥 ¬ 𝜑 → 𝜓)) |
3 | con1b 347 | . 2 ⊢ ((¬ ∀𝑥 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | |
4 | 2, 3 | bitri 263 | 1 ⊢ ((∃𝑥𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: ax5e 1829 19.23t 2066 19.23tOLD 2206 xfree2 28688 bj-nalnalimiOLD 31799 bj-exalimi 31801 |
Copyright terms: Public domain | W3C validator |