 Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-naev Structured version   Visualization version   GIF version

Theorem wl-naev 32481
 Description: If some set variables can assume different values, then any two distinct set variables cannot always be the same. (Contributed by Wolf Lammen, 10-Aug-2019.)
Assertion
Ref Expression
wl-naev (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑢 𝑢 = 𝑣)
Distinct variable group:   𝑣,𝑢

Proof of Theorem wl-naev
StepHypRef Expression
1 aev 1970 . 2 (∀𝑢 𝑢 = 𝑣 → ∀𝑥 𝑥 = 𝑦)
21con3i 149 1 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑢 𝑢 = 𝑣)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  wl-sbcom2d-lem2  32522  wl-sbal1  32525  wl-sbal2  32526  wl-ax11-lem3  32543
 Copyright terms: Public domain W3C validator