Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nanbi2 | Structured version Visualization version GIF version |
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) (Revised by Wolf Lammen, 27-Jun-2020.) |
Ref | Expression |
---|---|
wl-nanbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1 336 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → ¬ 𝜒) ↔ (𝜓 → ¬ 𝜒))) | |
2 | wl-dfnan2 32475 | . 2 ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜑 → ¬ 𝜒)) | |
3 | wl-dfnan2 32475 | . 2 ⊢ ((𝜓 ⊼ 𝜒) ↔ (𝜓 → ¬ 𝜒)) | |
4 | 1, 2, 3 | 3bitr4g 302 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ⊼ wnan 1439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-nan 1440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |