Proof of Theorem vtocl2d
Step | Hyp | Ref
| Expression |
1 | | vtocl2d.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
2 | | vtocl2d.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | nfcv 2751 |
. . . 4
⊢
Ⅎ𝑦𝐵 |
4 | | nfcv 2751 |
. . . 4
⊢
Ⅎ𝑥𝐵 |
5 | | nfcv 2751 |
. . . 4
⊢
Ⅎ𝑥𝐴 |
6 | | nfv 1830 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
7 | | nfsbc1v 3422 |
. . . . 5
⊢
Ⅎ𝑦[𝐵 / 𝑦]𝜓 |
8 | 6, 7 | nfim 1813 |
. . . 4
⊢
Ⅎ𝑦(𝜑 → [𝐵 / 𝑦]𝜓) |
9 | | nfv 1830 |
. . . 4
⊢
Ⅎ𝑥(𝜑 → 𝜒) |
10 | | sbceq1a 3413 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
11 | 10 | imbi2d 329 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝜑 → 𝜓) ↔ (𝜑 → [𝐵 / 𝑦]𝜓))) |
12 | | sbceq1a 3413 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜓 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜓)) |
13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝜑) → ([𝐵 / 𝑦]𝜓 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜓)) |
14 | | nfv 1830 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜒 |
15 | | nfv 1830 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜒 |
16 | | nfv 1830 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐵 ∈ 𝑊 |
17 | | vtocl2d.1 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
18 | 14, 15, 16, 17 | sbc2iegf 3471 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
19 | 2, 1, 18 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
20 | 19 | adantl 481 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
21 | 13, 20 | bitrd 267 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝜑) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
22 | 21 | pm5.74da 719 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝜑 → [𝐵 / 𝑦]𝜓) ↔ (𝜑 → 𝜒))) |
23 | | vtocl2d.3 |
. . . 4
⊢ (𝜑 → 𝜓) |
24 | 3, 4, 5, 8, 9, 11,
22, 23 | vtocl2gf 3241 |
. . 3
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝜑 → 𝜒)) |
25 | 1, 2, 24 | syl2anc 691 |
. 2
⊢ (𝜑 → (𝜑 → 𝜒)) |
26 | 25 | pm2.43i 50 |
1
⊢ (𝜑 → 𝜒) |