Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif3OLD Structured version   Visualization version   GIF version

Theorem undif3OLD 3848
 Description: Obsolete proof of undif3 3847 as of 13-Jul-2021. (Contributed by Alan Sare, 17-Apr-2012.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
undif3OLD (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

Proof of Theorem undif3OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 3715 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 pm4.53 512 . . . . 5 (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
3 eldif 3550 . . . . 5 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
42, 3xchnxbir 322 . . . 4 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
51, 4anbi12i 729 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
6 eldif 3550 . . 3 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
7 elun 3715 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 eldif 3550 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
98orbi2i 540 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
10 orc 399 . . . . . . 7 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
11 olc 398 . . . . . . 7 (𝑥𝐴 → (¬ 𝑥𝐶𝑥𝐴))
1210, 11jca 553 . . . . . 6 (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
13 olc 398 . . . . . . 7 (𝑥𝐵 → (𝑥𝐴𝑥𝐵))
14 orc 399 . . . . . . 7 𝑥𝐶 → (¬ 𝑥𝐶𝑥𝐴))
1513, 14anim12i 588 . . . . . 6 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
1612, 15jaoi 393 . . . . 5 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
17 simpl 472 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → 𝑥𝐴)
1817orcd 406 . . . . . 6 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
19 olc 398 . . . . . 6 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
20 orc 399 . . . . . . 7 (𝑥𝐴 → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
2120adantr 480 . . . . . 6 ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
2220adantl 481 . . . . . 6 ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
2318, 19, 21, 22ccase 984 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
2416, 23impbii 198 . . . 4 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
257, 9, 243bitri 285 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
265, 6, 253bitr4ri 292 . 2 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
2726eqriv 2607 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   ∪ cun 3538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator