MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcreu Structured version   Visualization version   GIF version

Theorem sbcreu 3482
Description: Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcreu ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem sbcreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3412 . 2 ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑𝐴 ∈ V)
2 reurex 3137 . . 3 (∃!𝑦𝐵 [𝐴 / 𝑥]𝜑 → ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
3 sbcex 3412 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
43rexlimivw 3011 . . 3 (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V)
52, 4syl 17 . 2 (∃!𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V)
6 dfsbcq2 3405 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑[𝐴 / 𝑥]∃!𝑦𝐵 𝜑))
7 dfsbcq2 3405 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
87reubidv 3103 . . 3 (𝑧 = 𝐴 → (∃!𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
9 nfcv 2751 . . . . 5 𝑥𝐵
10 nfs1v 2425 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
119, 10nfreu 3093 . . . 4 𝑥∃!𝑦𝐵 [𝑧 / 𝑥]𝜑
12 sbequ12 2097 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1312reubidv 3103 . . . 4 (𝑥 = 𝑧 → (∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑))
1411, 13sbie 2396 . . 3 ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑)
156, 8, 14vtoclbg 3240 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
161, 5, 15pm5.21nii 367 1 ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  [wsb 1867  wcel 1977  wrex 2897  ∃!wreu 2898  Vcvv 3173  [wsbc 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-v 3175  df-sbc 3403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator