Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbid Structured version   Visualization version   GIF version

Theorem sbcbid 3456
 Description: Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcbid.1 𝑥𝜑
sbcbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbcbid (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbcbid
StepHypRef Expression
1 sbcbid.1 . . . 4 𝑥𝜑
2 sbcbid.2 . . . 4 (𝜑 → (𝜓𝜒))
31, 2abbid 2727 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
43eleq2d 2673 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑥𝜒}))
5 df-sbc 3403 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 3403 . 2 ([𝐴 / 𝑥]𝜒𝐴 ∈ {𝑥𝜒})
74, 5, 63bitr4g 302 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  Ⅎwnf 1699   ∈ wcel 1977  {cab 2596  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-sbc 3403 This theorem is referenced by:  sbcbidv  3457  csbeq2d  3943
 Copyright terms: Public domain W3C validator