Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspct Structured version   Visualization version   GIF version

Theorem rspct 3275
 Description: A closed version of rspc 3276. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1 𝑥𝜓
Assertion
Ref Expression
rspct (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2901 . . . 4 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
2 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32adantr 480 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝑥𝐵𝐴𝐵))
4 simpr 476 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝜑𝜓))
53, 4imbi12d 333 . . . . . . . 8 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
65ex 449 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑𝜓) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
76a2i 14 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
87alimi 1730 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
9 nfv 1830 . . . . . . 7 𝑥 𝐴𝐵
10 rspct.1 . . . . . . 7 𝑥𝜓
119, 10nfim 1813 . . . . . 6 𝑥(𝐴𝐵𝜓)
12 nfcv 2751 . . . . . 6 𝑥𝐴
1311, 12spcgft 3258 . . . . 5 (∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
148, 13syl 17 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
151, 14syl7bi 244 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))))
1615com34 89 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
1716pm2.43d 51 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  ∀wral 2896 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175 This theorem is referenced by:  rspcdf  42222
 Copyright terms: Public domain W3C validator