MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2 Structured version   Visualization version   GIF version

Theorem reusv2 4800
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦) that is constant for those 𝑦𝐵 such that 𝜑. The first antecedent ensures that the constant value belongs to the existential uniqueness domain 𝐴, and the second ensures that 𝐶(𝑦) is evaluated for at least one 𝑦. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2 ((∀𝑦𝐵 (𝜑𝐶𝐴) ∧ ∃𝑦𝐵 𝜑) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem reusv2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfrab1 3099 . . . 4 𝑦{𝑦𝐵𝜑}
2 nfcv 2751 . . . 4 𝑧{𝑦𝐵𝜑}
3 nfv 1830 . . . 4 𝑧 𝐶𝐴
4 nfcsb1v 3515 . . . . 5 𝑦𝑧 / 𝑦𝐶
54nfel1 2765 . . . 4 𝑦𝑧 / 𝑦𝐶𝐴
6 csbeq1a 3508 . . . . 5 (𝑦 = 𝑧𝐶 = 𝑧 / 𝑦𝐶)
76eleq1d 2672 . . . 4 (𝑦 = 𝑧 → (𝐶𝐴𝑧 / 𝑦𝐶𝐴))
81, 2, 3, 5, 7cbvralf 3141 . . 3 (∀𝑦 ∈ {𝑦𝐵𝜑}𝐶𝐴 ↔ ∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴)
9 rabid 3095 . . . . . 6 (𝑦 ∈ {𝑦𝐵𝜑} ↔ (𝑦𝐵𝜑))
109imbi1i 338 . . . . 5 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝐶𝐴) ↔ ((𝑦𝐵𝜑) → 𝐶𝐴))
11 impexp 461 . . . . 5 (((𝑦𝐵𝜑) → 𝐶𝐴) ↔ (𝑦𝐵 → (𝜑𝐶𝐴)))
1210, 11bitri 263 . . . 4 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝐶𝐴) ↔ (𝑦𝐵 → (𝜑𝐶𝐴)))
1312ralbii2 2961 . . 3 (∀𝑦 ∈ {𝑦𝐵𝜑}𝐶𝐴 ↔ ∀𝑦𝐵 (𝜑𝐶𝐴))
148, 13bitr3i 265 . 2 (∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴 ↔ ∀𝑦𝐵 (𝜑𝐶𝐴))
15 rabn0 3912 . 2 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∃𝑦𝐵 𝜑)
16 reusv2lem5 4799 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴 ∧ {𝑦𝐵𝜑} ≠ ∅) → (∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶))
17 nfv 1830 . . . . . 6 𝑧 𝑥 = 𝐶
184nfeq2 2766 . . . . . 6 𝑦 𝑥 = 𝑧 / 𝑦𝐶
196eqeq2d 2620 . . . . . 6 (𝑦 = 𝑧 → (𝑥 = 𝐶𝑥 = 𝑧 / 𝑦𝐶))
201, 2, 17, 18, 19cbvrexf 3142 . . . . 5 (∃𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∃𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶)
219anbi1i 727 . . . . . . 7 ((𝑦 ∈ {𝑦𝐵𝜑} ∧ 𝑥 = 𝐶) ↔ ((𝑦𝐵𝜑) ∧ 𝑥 = 𝐶))
22 anass 679 . . . . . . 7 (((𝑦𝐵𝜑) ∧ 𝑥 = 𝐶) ↔ (𝑦𝐵 ∧ (𝜑𝑥 = 𝐶)))
2321, 22bitri 263 . . . . . 6 ((𝑦 ∈ {𝑦𝐵𝜑} ∧ 𝑥 = 𝐶) ↔ (𝑦𝐵 ∧ (𝜑𝑥 = 𝐶)))
2423rexbii2 3021 . . . . 5 (∃𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∃𝑦𝐵 (𝜑𝑥 = 𝐶))
2520, 24bitr3i 265 . . . 4 (∃𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃𝑦𝐵 (𝜑𝑥 = 𝐶))
2625reubii 3105 . . 3 (∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
271, 2, 17, 18, 19cbvralf 3141 . . . . 5 (∀𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∀𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶)
289imbi1i 338 . . . . . . 7 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝑥 = 𝐶) ↔ ((𝑦𝐵𝜑) → 𝑥 = 𝐶))
29 impexp 461 . . . . . . 7 (((𝑦𝐵𝜑) → 𝑥 = 𝐶) ↔ (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
3028, 29bitri 263 . . . . . 6 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝑥 = 𝐶) ↔ (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
3130ralbii2 2961 . . . . 5 (∀𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∀𝑦𝐵 (𝜑𝑥 = 𝐶))
3227, 31bitr3i 265 . . . 4 (∀𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∀𝑦𝐵 (𝜑𝑥 = 𝐶))
3332reubii 3105 . . 3 (∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
3416, 26, 333bitr3g 301 . 2 ((∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴 ∧ {𝑦𝐵𝜑} ≠ ∅) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
3514, 15, 34syl2anbr 496 1 ((∀𝑦𝐵 (𝜑𝐶𝐴) ∧ ∃𝑦𝐵 𝜑) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  {crab 2900  csb 3499  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717  ax-pow 4769
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-nul 3875
This theorem is referenced by:  cdleme25dN  34662
  Copyright terms: Public domain W3C validator