Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabid3 | Structured version Visualization version GIF version |
Description: Membership in a restricted abstraction (special case). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
rabid3.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
rabid3 | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid3.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2680 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3095 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 263 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-an 385 df-tru 1478 df-ex 1696 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-rab 2905 |
This theorem is referenced by: ovolval5lem3 39544 pimdecfgtioc 39602 pimincfltioc 39603 pimdecfgtioo 39604 pimincfltioo 39605 |
Copyright terms: Public domain | W3C validator |