MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notnotr Structured version   Visualization version   GIF version

Theorem notnotr 124
Description: Double negation elimination. Converse of notnot 135 and one implication of notnotb 303. Theorem *2.14 of [WhiteheadRussell] p. 102. This was the fifth axiom of Frege, specifically Proposition 31 of [Frege1879] p. 44. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true, and formulas for which it is true are called "stable." (Contributed by NM, 29-Dec-1992.) (Proof shortened by David Harvey, 5-Sep-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Assertion
Ref Expression
notnotr (¬ ¬ 𝜑𝜑)

Proof of Theorem notnotr
StepHypRef Expression
1 pm2.21 119 . 2 (¬ ¬ 𝜑 → (¬ 𝜑𝜑))
21pm2.18d 123 1 (¬ ¬ 𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  notnotriOLD  126  notnotrd  127  con2d  128  con3d  147  notnotb  303  ecase3ad  983  necon1ad  2799  necon4bd  2802  notornotel1  33067  mpt2bi123f  33141  mptbi12f  33145  axfrege31  37147  clsk1independent  37364  con3ALT2  37757  zfregs2VD  38098  con3ALTVD  38174  notnotrALT2  38185  suplesup  38496  eulercrct  41410
  Copyright terms: Public domain W3C validator