Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  notatnand Structured version   Visualization version   GIF version

Theorem notatnand 39712
Description: Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypothesis
Ref Expression
notatnand.1 ¬ 𝜑
Assertion
Ref Expression
notatnand ¬ (𝜑𝜓)

Proof of Theorem notatnand
StepHypRef Expression
1 notatnand.1 . 2 ¬ 𝜑
21intnanr 952 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385
This theorem is referenced by:  dandysum2p2e4  39814
  Copyright terms: Public domain W3C validator