 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  neneor Structured version   Visualization version   GIF version

Theorem neneor 2881
 Description: If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Assertion
Ref Expression
neneor (𝐴𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neneor
StepHypRef Expression
1 eqtr3 2631 . . 3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
21necon3ai 2807 . 2 (𝐴𝐵 → ¬ (𝐴 = 𝐶𝐵 = 𝐶))
3 neorian 2876 . 2 ((𝐴𝐶𝐵𝐶) ↔ ¬ (𝐴 = 𝐶𝐵 = 𝐶))
42, 3sylibr 223 1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ≠ wne 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-cleq 2603  df-ne 2782 This theorem is referenced by:  trgcopyeulem  25497
 Copyright terms: Public domain W3C validator