Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moexexv | Structured version Visualization version GIF version |
Description: "At most one" double quantification. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
moexexv | ⊢ ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1830 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | moexex 2529 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1473 ∃wex 1695 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 df-mo 2463 |
This theorem is referenced by: mosub 3351 funco 5842 |
Copyright terms: Public domain | W3C validator |