Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexv Structured version   Visualization version   GIF version

Theorem moexexv 2530
 Description: "At most one" double quantification. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
moexexv ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem moexexv
StepHypRef Expression
1 nfv 1830 . 2 𝑦𝜑
21moexex 2529 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473  ∃wex 1695  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463 This theorem is referenced by:  mosub  3351  funco  5842
 Copyright terms: Public domain W3C validator