MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inssdif0 Structured version   Visualization version   GIF version

Theorem inssdif0 3901
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
inssdif0 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem inssdif0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 338 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) → 𝑥𝐶))
3 iman 439 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝑥𝐶) ↔ ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
42, 3bitri 263 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
5 eldif 3550 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65anbi2i 726 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 elin 3758 . . . . 5 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 anass 679 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
96, 7, 83bitr4ri 292 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
104, 9xchbinx 323 . . 3 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1110albii 1737 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
12 dfss2 3557 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
13 eq0 3888 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1411, 12, 133bitr4i 291 1 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  cdif 3537  cin 3539  wss 3540  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875
This theorem is referenced by:  disjdif  3992  inf3lem3  8410  ssfin4  9015  isnrm2  20972  1stccnp  21075  llycmpkgen2  21163  ufileu  21533  fclscf  21639  flimfnfcls  21642  inindif  28738  opnbnd  31490  diophrw  36340  setindtr  36609
  Copyright terms: Public domain W3C validator