Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) AV: This theorem already exists as ifbieq12d 4063. TODO (NM): Please replace the usage of this theorem by ifbieq12d 4063 then delete this theorem. (New usage is discouraged.) |
Ref | Expression |
---|---|
ifeq123d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifeq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq123d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq123d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | ifeq123d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | ifeq123d.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 1, 2, 3 | ifbieq12d 4063 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ifcif 4036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-un 3545 df-if 4037 |
This theorem is referenced by: icccncfext 38773 fourierdlem103 39102 fourierdlem104 39103 |
Copyright terms: Public domain | W3C validator |