Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen11nv Structured version   Visualization version   GIF version

Theorem gen11nv 37863
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih 1741 is gen11nv 37863 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
gen11nv.1 (𝜑 → ∀𝑥𝜑)
gen11nv.2 (   𝜑   ▶   𝜓   )
Assertion
Ref Expression
gen11nv (   𝜑   ▶   𝑥𝜓   )

Proof of Theorem gen11nv
StepHypRef Expression
1 gen11nv.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 gen11nv.2 . . . 4 (   𝜑   ▶   𝜓   )
32in1 37808 . . 3 (𝜑𝜓)
41, 3alrimih 1741 . 2 (𝜑 → ∀𝑥𝜓)
54dfvd1ir 37810 1 (   𝜑   ▶   𝑥𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  (   wvd1 37806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728
This theorem depends on definitions:  df-bi 196  df-vd1 37807
This theorem is referenced by:  tratrbVD  38119  hbimpgVD  38162  hbalgVD  38163  hbexgVD  38164  e2ebindVD  38170
  Copyright terms: Public domain W3C validator