Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege67c Structured version   Visualization version   GIF version

Theorem frege67c 37244
Description: Lemma for frege68c 37245. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege67c (((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑)))

Proof of Theorem frege67c
StepHypRef Expression
1 frege59c.a . . 3 𝐴𝐵
21frege58c 37235 . 2 (∀𝑥𝜑[𝐴 / 𝑥]𝜑)
3 frege7 37122 . 2 ((∀𝑥𝜑[𝐴 / 𝑥]𝜑) → (((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))))
42, 3ax-mp 5 1 (((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473  wcel 1977  [wsbc 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034  ax-ext 2590  ax-frege1 37104  ax-frege2 37105  ax-frege58b 37215
This theorem depends on definitions:  df-bi 196  df-an 385  df-tru 1478  df-ex 1696  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175  df-sbc 3403
This theorem is referenced by:  frege68c  37245
  Copyright terms: Public domain W3C validator