Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege58c Structured version   Visualization version   GIF version

Theorem frege58c 37235
 Description: Principle related to sp 2041. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege58c.a 𝐴𝐵
Assertion
Ref Expression
frege58c (∀𝑥𝜑[𝐴 / 𝑥]𝜑)

Proof of Theorem frege58c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frege58c.a . 2 𝐴𝐵
2 ax-frege58b 37215 . . . . 5 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
3 sbsbc 3406 . . . . 5 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
42, 3sylib 207 . . . 4 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
5 dfsbcq 3404 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
64, 5syl5ib 233 . . 3 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
76vtocleg 3252 . 2 (𝐴𝐵 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
81, 7ax-mp 5 1 (∀𝑥𝜑[𝐴 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473   = wceq 1475  [wsb 1867   ∈ wcel 1977  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034  ax-ext 2590  ax-frege58b 37215 This theorem depends on definitions:  df-bi 196  df-an 385  df-tru 1478  df-ex 1696  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175  df-sbc 3403 This theorem is referenced by:  frege59c  37236  frege60c  37237  frege61c  37238  frege62c  37239  frege67c  37244  frege72  37249  frege118  37295  frege120  37297
 Copyright terms: Public domain W3C validator