Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege59c | Structured version Visualization version GIF version |
Description: A kind of Aristotelian
inference. Proposition 59 of [Frege1879] p.
51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 37127 incorrectly referenced where frege30 37146 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege59c | ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . . 4 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege58c 37235 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝐴 / 𝑥](𝜑 → 𝜓)) |
3 | sbcim1 3449 | . . 3 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
5 | frege30 37146 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) → ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓)))) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 ∈ wcel 1977 [wsbc 3402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 ax-ext 2590 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 ax-frege28 37144 ax-frege58b 37215 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 df-sbc 3403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |