Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege59a | Structured version Visualization version GIF version |
Description: A kind of Aristotelian
inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 37127 incorrectly referenced where frege30 37146 is in the original. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59a | ⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58acor 37190 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | |
2 | frege30 37146 | . 2 ⊢ ((((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) → (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏))))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 if-wif 1006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 ax-frege28 37144 ax-frege58a 37189 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |