Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fglmod Structured version   Visualization version   GIF version

Theorem fglmod 36661
 Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
fglmod (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)

Proof of Theorem fglmod
StepHypRef Expression
1 df-lfig 36656 . . 3 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
2 ssrab2 3650 . . 3 {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ⊆ LMod
31, 2eqsstri 3598 . 2 LFinGen ⊆ LMod
43sseli 3564 1 (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  {crab 2900   ∩ cin 3539  𝒫 cpw 4108   “ cima 5041  ‘cfv 5804  Fincfn 7841  Basecbs 15695  LModclmod 18686  LSpanclspn 18792  LFinGenclfig 36655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-in 3547  df-ss 3554  df-lfig 36656 This theorem is referenced by:  lnrfg  36708
 Copyright terms: Public domain W3C validator