Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equid1 Structured version   Visualization version   GIF version

Theorem equid1 32998
Description: Proof of equid 1925 from our older axioms. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms (although the proof, as you can see below, is not as obvious as you might think). This proof uses only axioms without distinct variable conditions and requires no dummy variables. A simpler proof, similar to Tarski's, is possible if we make use of ax-5 1826; see the proof of equid 1925. See equid1ALT 33024 for an alternate proof. (Contributed by NM, 10-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equid1 𝑥 = 𝑥

Proof of Theorem equid1
StepHypRef Expression
1 ax-c4 32983 . . . 4 (∀𝑥(∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) → (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)))
2 ax-c5 32982 . . . . 5 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑥)
3 ax-c9 32989 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑥 → (¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)))
42, 2, 3sylc 62 . . . 4 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
51, 4mpg 1714 . . 3 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
6 ax-c10 32985 . . 3 (∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) → 𝑥 = 𝑥)
75, 6syl 17 . 2 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥𝑥 = 𝑥)
8 ax-c7 32984 . 2 (¬ ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥𝑥 = 𝑥)
97, 8pm2.61i 174 1 𝑥 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-c5 32982  ax-c4 32983  ax-c7 32984  ax-c10 32985  ax-c9 32989
This theorem is referenced by:  equcomi1  32999
  Copyright terms: Public domain W3C validator