Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintabg Structured version   Visualization version   GIF version

Theorem elintabg 36899
Description: Two ways of saying a set is an element of the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
elintabg (𝐴𝑉 → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elintabg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elintg 4418 . 2 (𝐴𝑉 → (𝐴 {𝑥𝜑} ↔ ∀𝑦 ∈ {𝑥𝜑}𝐴𝑦))
2 eleq2 2677 . . 3 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
32ralab2 3338 . 2 (∀𝑦 ∈ {𝑥𝜑}𝐴𝑦 ↔ ∀𝑥(𝜑𝐴𝑥))
41, 3syl6bb 275 1 (𝐴𝑉 → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473  wcel 1977  {cab 2596  wral 2896   cint 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-int 4411
This theorem is referenced by:  elinintab  36900
  Copyright terms: Public domain W3C validator