Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimhyp2v Structured version   Visualization version   GIF version

Theorem elimhyp2v 4097
 Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999.)
Hypotheses
Ref Expression
elimhyp2v.1 (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜑𝜒))
elimhyp2v.2 (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒𝜃))
elimhyp2v.3 (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏𝜂))
elimhyp2v.4 (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂𝜃))
elimhyp2v.5 𝜏
Assertion
Ref Expression
elimhyp2v 𝜃

Proof of Theorem elimhyp2v
StepHypRef Expression
1 iftrue 4042 . . . . . 6 (𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐴)
21eqcomd 2616 . . . . 5 (𝜑𝐴 = if(𝜑, 𝐴, 𝐶))
3 elimhyp2v.1 . . . . 5 (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜑𝜒))
42, 3syl 17 . . . 4 (𝜑 → (𝜑𝜒))
5 iftrue 4042 . . . . . 6 (𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐵)
65eqcomd 2616 . . . . 5 (𝜑𝐵 = if(𝜑, 𝐵, 𝐷))
7 elimhyp2v.2 . . . . 5 (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒𝜃))
86, 7syl 17 . . . 4 (𝜑 → (𝜒𝜃))
94, 8bitrd 267 . . 3 (𝜑 → (𝜑𝜃))
109ibi 255 . 2 (𝜑𝜃)
11 elimhyp2v.5 . . 3 𝜏
12 iffalse 4045 . . . . . 6 𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶)
1312eqcomd 2616 . . . . 5 𝜑𝐶 = if(𝜑, 𝐴, 𝐶))
14 elimhyp2v.3 . . . . 5 (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏𝜂))
1513, 14syl 17 . . . 4 𝜑 → (𝜏𝜂))
16 iffalse 4045 . . . . . 6 𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐷)
1716eqcomd 2616 . . . . 5 𝜑𝐷 = if(𝜑, 𝐵, 𝐷))
18 elimhyp2v.4 . . . . 5 (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂𝜃))
1917, 18syl 17 . . . 4 𝜑 → (𝜂𝜃))
2015, 19bitrd 267 . . 3 𝜑 → (𝜏𝜃))
2111, 20mpbii 222 . 2 𝜑𝜃)
2210, 21pm2.61i 175 1 𝜃
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   = wceq 1475  ifcif 4036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-if 4037 This theorem is referenced by:  omlsi  27647
 Copyright terms: Public domain W3C validator