Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliin2f Structured version   Visualization version   GIF version

Theorem eliin2f 38316
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
eliin2f.1 𝑥𝐵
Assertion
Ref Expression
eliin2f (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem eliin2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4461 . . 3 (𝐴 ∈ V → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
21adantl 481 . 2 ((𝐵 ≠ ∅ ∧ 𝐴 ∈ V) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
3 prcnel 3191 . . . . 5 𝐴 ∈ V → ¬ 𝐴 𝑥𝐵 𝐶)
43adantl 481 . . . 4 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴 𝑥𝐵 𝐶)
5 n0 3890 . . . . . . . . . 10 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
65biimpi 205 . . . . . . . . 9 (𝐵 ≠ ∅ → ∃𝑦 𝑦𝐵)
76adantr 480 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → ∃𝑦 𝑦𝐵)
8 prcnel 3191 . . . . . . . . . . . 12 𝐴 ∈ V → ¬ 𝐴𝑦 / 𝑥𝐶)
98a1d 25 . . . . . . . . . . 11 𝐴 ∈ V → (𝑦𝐵 → ¬ 𝐴𝑦 / 𝑥𝐶))
109adantl 481 . . . . . . . . . 10 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → (𝑦𝐵 → ¬ 𝐴𝑦 / 𝑥𝐶))
1110ancld 574 . . . . . . . . 9 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → (𝑦𝐵 → (𝑦𝐵 ∧ ¬ 𝐴𝑦 / 𝑥𝐶)))
1211eximdv 1833 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → (∃𝑦 𝑦𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝐴𝑦 / 𝑥𝐶)))
137, 12mpd 15 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → ∃𝑦(𝑦𝐵 ∧ ¬ 𝐴𝑦 / 𝑥𝐶))
14 df-rex 2902 . . . . . . 7 (∃𝑦𝐵 ¬ 𝐴𝑦 / 𝑥𝐶 ↔ ∃𝑦(𝑦𝐵 ∧ ¬ 𝐴𝑦 / 𝑥𝐶))
1513, 14sylibr 223 . . . . . 6 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → ∃𝑦𝐵 ¬ 𝐴𝑦 / 𝑥𝐶)
16 eliin2f.1 . . . . . . 7 𝑥𝐵
17 nfcv 2751 . . . . . . 7 𝑦𝐵
18 nfv 1830 . . . . . . 7 𝑦 ¬ 𝐴𝐶
19 nfcv 2751 . . . . . . . . 9 𝑥𝐴
20 nfcsb1v 3515 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐶
2119, 20nfel 2763 . . . . . . . 8 𝑥 𝐴𝑦 / 𝑥𝐶
2221nfn 1768 . . . . . . 7 𝑥 ¬ 𝐴𝑦 / 𝑥𝐶
23 csbeq1a 3508 . . . . . . . . 9 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
2423eleq2d 2673 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝐶𝐴𝑦 / 𝑥𝐶))
2524notbid 307 . . . . . . 7 (𝑥 = 𝑦 → (¬ 𝐴𝐶 ↔ ¬ 𝐴𝑦 / 𝑥𝐶))
2616, 17, 18, 22, 25cbvrexf 3142 . . . . . 6 (∃𝑥𝐵 ¬ 𝐴𝐶 ↔ ∃𝑦𝐵 ¬ 𝐴𝑦 / 𝑥𝐶)
2715, 26sylibr 223 . . . . 5 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → ∃𝑥𝐵 ¬ 𝐴𝐶)
28 rexnal 2978 . . . . 5 (∃𝑥𝐵 ¬ 𝐴𝐶 ↔ ¬ ∀𝑥𝐵 𝐴𝐶)
2927, 28sylib 207 . . . 4 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → ¬ ∀𝑥𝐵 𝐴𝐶)
304, 29jca 553 . . 3 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → (¬ 𝐴 𝑥𝐵 𝐶 ∧ ¬ ∀𝑥𝐵 𝐴𝐶))
31 pm5.21 899 . . 3 ((¬ 𝐴 𝑥𝐵 𝐶 ∧ ¬ ∀𝑥𝐵 𝐴𝐶) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
3230, 31syl 17 . 2 ((𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
332, 32pm2.61dan 828 1 (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wnfc 2738  wne 2780  wral 2896  wrex 2897  Vcvv 3173  csb 3499  c0 3874   ciin 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-nul 3875  df-iin 4458
This theorem is referenced by:  eliin2  38330
  Copyright terms: Public domain W3C validator