Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelimf Structured version   Visualization version   GIF version

Theorem dvelimf 2322
 Description: Version of dvelimv 2326 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
Hypotheses
Ref Expression
dvelimf.1 𝑥𝜑
dvelimf.2 𝑧𝜓
dvelimf.3 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimf (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)

Proof of Theorem dvelimf
StepHypRef Expression
1 dvelimf.2 . . . 4 𝑧𝜓
2 dvelimf.3 . . . 4 (𝑧 = 𝑦 → (𝜑𝜓))
31, 2equsal 2279 . . 3 (∀𝑧(𝑧 = 𝑦𝜑) ↔ 𝜓)
43bicomi 213 . 2 (𝜓 ↔ ∀𝑧(𝑧 = 𝑦𝜑))
5 nfnae 2306 . . 3 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
6 nfeqf 2289 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
76ancoms 468 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 = 𝑦)
8 dvelimf.1 . . . . 5 𝑥𝜑
98a1i 11 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝜑)
107, 9nfimd 1812 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧 = 𝑦𝜑))
115, 10nfald2 2319 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑧(𝑧 = 𝑦𝜑))
124, 11nfxfrd 1772 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  Ⅎwnf 1699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by:  dvelimdf  2323  dvelimh  2324  dvelimnf  2327
 Copyright terms: Public domain W3C validator