Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difexOLD Structured version   Visualization version   GIF version

Theorem difexOLD 4737
 Description: Obsolete version of difexi 4736 as of 26-Mar-2021. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
difexOLD.1 𝐴𝑉
Assertion
Ref Expression
difexOLD (𝐴𝐵) ∈ V

Proof of Theorem difexOLD
StepHypRef Expression
1 difexOLD.1 . 2 𝐴𝑉
2 difexg 4735 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝐴𝐵) ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977  Vcvv 3173   ∖ cdif 3537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator