Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestgf Structured version   Visualization version   GIF version

Theorem csbnestgf 3948
 Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)

Proof of Theorem csbnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . . 3 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3500 . . . . . . 7 𝐵 / 𝑦𝐶 = {𝑧[𝐵 / 𝑦]𝑧𝐶}
32abeq2i 2722 . . . . . 6 (𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐶)
43sbcbii 3458 . . . . 5 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶)
5 nfcr 2743 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥 𝑧𝐶)
65alimi 1730 . . . . . 6 (∀𝑦𝑥𝐶 → ∀𝑦𝑥 𝑧𝐶)
7 sbcnestgf 3947 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦𝑥 𝑧𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
86, 7sylan2 490 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
94, 8syl5bb 271 . . . 4 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
109abbidv 2728 . . 3 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
111, 10sylan 487 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
12 df-csb 3500 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶}
13 df-csb 3500 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶}
1411, 12, 133eqtr4g 2669 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  {cab 2596  Ⅎwnfc 2738  Vcvv 3173  [wsbc 3402  ⦋csb 3499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500 This theorem is referenced by:  csbnestg  3950  csbnest1g  3953
 Copyright terms: Public domain W3C validator