MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrex2v Structured version   Visualization version   GIF version

Theorem ceqsrex2v 3308
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
Hypotheses
Ref Expression
ceqsrex2v.1 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsrex2v.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsrex2v ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐶(𝑦)

Proof of Theorem ceqsrex2v
StepHypRef Expression
1 anass 679 . . . . . 6 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21rexbii 3023 . . . . 5 (∃𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 r19.42v 3073 . . . . 5 (∃𝑦𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
42, 3bitri 263 . . . 4 (∃𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
54rexbii 3023 . . 3 (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑥𝐶 (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
6 ceqsrex2v.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
76anbi2d 736 . . . . 5 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
87rexbidv 3034 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝐷 (𝑦 = 𝐵𝜑) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
98ceqsrexv 3306 . . 3 (𝐴𝐶 → (∃𝑥𝐶 (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
105, 9syl5bb 271 . 2 (𝐴𝐶 → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
11 ceqsrex2v.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1211ceqsrexv 3306 . 2 (𝐵𝐷 → (∃𝑦𝐷 (𝑦 = 𝐵𝜓) ↔ 𝜒))
1310, 12sylan9bb 732 1 ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-rex 2902  df-v 3175
This theorem is referenced by:  opiota  7118  brdom7disj  9234  brdom6disj  9235  lsmspsn  18905
  Copyright terms: Public domain W3C validator