Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiota Structured version   Visualization version   GIF version

Theorem opiota 7118
 Description: The property of a uniquely specified ordered pair. The proof uses properties of the ℩ description binder. (Contributed by Mario Carneiro, 21-May-2015.)
Hypotheses
Ref Expression
opiota.1 𝐼 = (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
opiota.2 𝑋 = (1st𝐼)
opiota.3 𝑌 = (2nd𝐼)
opiota.4 (𝑥 = 𝐶 → (𝜑𝜓))
opiota.5 (𝑦 = 𝐷 → (𝜓𝜒))
Assertion
Ref Expression
opiota (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ((𝐶𝐴𝐷𝐵𝜒) ↔ (𝐶 = 𝑋𝐷 = 𝑌)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜒,𝑦   𝜑,𝑧   𝑥,𝐷,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)   𝐼(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem opiota
StepHypRef Expression
1 opiota.4 . . . . . . 7 (𝑥 = 𝐶 → (𝜑𝜓))
2 opiota.5 . . . . . . 7 (𝑦 = 𝐷 → (𝜓𝜒))
31, 2ceqsrex2v 3308 . . . . . 6 ((𝐶𝐴𝐷𝐵) → (∃𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑) ↔ 𝜒))
43bicomd 212 . . . . 5 ((𝐶𝐴𝐷𝐵) → (𝜒 ↔ ∃𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑)))
5 opex 4859 . . . . . . . 8 𝐶, 𝐷⟩ ∈ V
65a1i 11 . . . . . . 7 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ⟨𝐶, 𝐷⟩ ∈ V)
7 id 22 . . . . . . 7 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
8 eqeq1 2614 . . . . . . . . . . 11 (𝑧 = ⟨𝐶, 𝐷⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑥, 𝑦⟩))
9 eqcom 2617 . . . . . . . . . . . 12 (⟨𝐶, 𝐷⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩)
10 vex 3176 . . . . . . . . . . . . 13 𝑥 ∈ V
11 vex 3176 . . . . . . . . . . . . 13 𝑦 ∈ V
1210, 11opth 4871 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
139, 12bitri 263 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
148, 13syl6bb 275 . . . . . . . . . 10 (𝑧 = ⟨𝐶, 𝐷⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷)))
1514anbi1d 737 . . . . . . . . 9 (𝑧 = ⟨𝐶, 𝐷⟩ → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑)))
16152rexbidv 3039 . . . . . . . 8 (𝑧 = ⟨𝐶, 𝐷⟩ → (∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑)))
1716adantl 481 . . . . . . 7 ((∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∧ 𝑧 = ⟨𝐶, 𝐷⟩) → (∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑)))
18 nfeu1 2468 . . . . . . 7 𝑧∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
19 nfvd 1831 . . . . . . 7 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → Ⅎ𝑧𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑))
20 nfcvd 2752 . . . . . . 7 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧𝐶, 𝐷⟩)
216, 7, 17, 18, 19, 20iota2df 5792 . . . . . 6 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (∃𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑) ↔ (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) = ⟨𝐶, 𝐷⟩))
22 eqcom 2617 . . . . . . 7 (⟨𝐶, 𝐷⟩ = 𝐼𝐼 = ⟨𝐶, 𝐷⟩)
23 opiota.1 . . . . . . . 8 𝐼 = (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2423eqeq1i 2615 . . . . . . 7 (𝐼 = ⟨𝐶, 𝐷⟩ ↔ (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) = ⟨𝐶, 𝐷⟩)
2522, 24bitri 263 . . . . . 6 (⟨𝐶, 𝐷⟩ = 𝐼 ↔ (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) = ⟨𝐶, 𝐷⟩)
2621, 25syl6bbr 277 . . . . 5 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (∃𝑥𝐴𝑦𝐵 ((𝑥 = 𝐶𝑦 = 𝐷) ∧ 𝜑) ↔ ⟨𝐶, 𝐷⟩ = 𝐼))
274, 26sylan9bbr 733 . . . 4 ((∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∧ (𝐶𝐴𝐷𝐵)) → (𝜒 ↔ ⟨𝐶, 𝐷⟩ = 𝐼))
2827pm5.32da 671 . . 3 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (((𝐶𝐴𝐷𝐵) ∧ 𝜒) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ = 𝐼)))
29 opelxpi 5072 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
30 simpl 472 . . . . . . . . . . 11 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 = ⟨𝑥, 𝑦⟩)
3130eleq1d 2672 . . . . . . . . . 10 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
3229, 31syl5ibrcom 236 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (𝐴 × 𝐵)))
3332rexlimivv 3018 . . . . . . . 8 (∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (𝐴 × 𝐵))
3433abssi 3640 . . . . . . 7 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
35 iotacl 5791 . . . . . . 7 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)})
3634, 35sseldi 3566 . . . . . 6 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (℩𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ∈ (𝐴 × 𝐵))
3723, 36syl5eqel 2692 . . . . 5 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐼 ∈ (𝐴 × 𝐵))
38 opelxp 5070 . . . . . 6 (⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵))
39 eleq1 2676 . . . . . 6 (⟨𝐶, 𝐷⟩ = 𝐼 → (⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵) ↔ 𝐼 ∈ (𝐴 × 𝐵)))
4038, 39syl5bbr 273 . . . . 5 (⟨𝐶, 𝐷⟩ = 𝐼 → ((𝐶𝐴𝐷𝐵) ↔ 𝐼 ∈ (𝐴 × 𝐵)))
4137, 40syl5ibrcom 236 . . . 4 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (⟨𝐶, 𝐷⟩ = 𝐼 → (𝐶𝐴𝐷𝐵)))
4241pm4.71rd 665 . . 3 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (⟨𝐶, 𝐷⟩ = 𝐼 ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ = 𝐼)))
43 1st2nd2 7096 . . . . 5 (𝐼 ∈ (𝐴 × 𝐵) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
4437, 43syl 17 . . . 4 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
4544eqeq2d 2620 . . 3 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (⟨𝐶, 𝐷⟩ = 𝐼 ↔ ⟨𝐶, 𝐷⟩ = ⟨(1st𝐼), (2nd𝐼)⟩))
4628, 42, 453bitr2d 295 . 2 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (((𝐶𝐴𝐷𝐵) ∧ 𝜒) ↔ ⟨𝐶, 𝐷⟩ = ⟨(1st𝐼), (2nd𝐼)⟩))
47 df-3an 1033 . 2 ((𝐶𝐴𝐷𝐵𝜒) ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝜒))
48 opiota.2 . . . . 5 𝑋 = (1st𝐼)
4948eqeq2i 2622 . . . 4 (𝐶 = 𝑋𝐶 = (1st𝐼))
50 opiota.3 . . . . 5 𝑌 = (2nd𝐼)
5150eqeq2i 2622 . . . 4 (𝐷 = 𝑌𝐷 = (2nd𝐼))
5249, 51anbi12i 729 . . 3 ((𝐶 = 𝑋𝐷 = 𝑌) ↔ (𝐶 = (1st𝐼) ∧ 𝐷 = (2nd𝐼)))
53 fvex 6113 . . . 4 (1st𝐼) ∈ V
54 fvex 6113 . . . 4 (2nd𝐼) ∈ V
5553, 54opth2 4875 . . 3 (⟨𝐶, 𝐷⟩ = ⟨(1st𝐼), (2nd𝐼)⟩ ↔ (𝐶 = (1st𝐼) ∧ 𝐷 = (2nd𝐼)))
5652, 55bitr4i 266 . 2 ((𝐶 = 𝑋𝐷 = 𝑌) ↔ ⟨𝐶, 𝐷⟩ = ⟨(1st𝐼), (2nd𝐼)⟩)
5746, 47, 563bitr4g 302 1 (∃!𝑧𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ((𝐶𝐴𝐷𝐵𝜒) ↔ (𝐶 = 𝑋𝐷 = 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃!weu 2458  {cab 2596  ∃wrex 2897  Vcvv 3173  ⟨cop 4131   × cxp 5036  ℩cio 5766  ‘cfv 5804  1st c1st 7057  2nd c2nd 7058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-1st 7059  df-2nd 7060 This theorem is referenced by:  oeeui  7569
 Copyright terms: Public domain W3C validator