Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmo Structured version   Visualization version   GIF version

Theorem cbvmo 2494
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
cbvmo.1 𝑦𝜑
cbvmo.2 𝑥𝜓
cbvmo.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvmo (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)

Proof of Theorem cbvmo
StepHypRef Expression
1 cbvmo.1 . . . 4 𝑦𝜑
2 cbvmo.2 . . . 4 𝑥𝜓
3 cbvmo.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvex 2260 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
51, 2, 3cbveu 2493 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
64, 5imbi12i 339 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
7 df-mo 2463 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
8 df-mo 2463 . 2 (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
96, 7, 83bitr4i 291 1 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∃wex 1695  Ⅎwnf 1699  ∃!weu 2458  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463 This theorem is referenced by:  dffun6f  5818  opabiotafun  6169  2ndcdisj  21069  cbvdisjf  28767  phpreu  32563
 Copyright terms: Public domain W3C validator