Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj887 Structured version   Visualization version   GIF version

Theorem bnj887 30089
 Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj887.1 (𝜑𝜑′)
bnj887.2 (𝜓𝜓′)
bnj887.3 (𝜒𝜒′)
bnj887.4 (𝜃𝜃′)
Assertion
Ref Expression
bnj887 ((𝜑𝜓𝜒𝜃) ↔ (𝜑′𝜓′𝜒′𝜃′))

Proof of Theorem bnj887
StepHypRef Expression
1 bnj887.1 . . . 4 (𝜑𝜑′)
2 bnj887.2 . . . 4 (𝜓𝜓′)
3 bnj887.3 . . . 4 (𝜒𝜒′)
41, 2, 33anbi123i 1244 . . 3 ((𝜑𝜓𝜒) ↔ (𝜑′𝜓′𝜒′))
5 bnj887.4 . . 3 (𝜃𝜃′)
64, 5anbi12i 729 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) ↔ ((𝜑′𝜓′𝜒′) ∧ 𝜃′))
7 df-bnj17 30006 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
8 df-bnj17 30006 . 2 ((𝜑′𝜓′𝜒′𝜃′) ↔ ((𝜑′𝜓′𝜒′) ∧ 𝜃′))
96, 7, 83bitr4i 291 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜑′𝜓′𝜒′𝜃′))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∧ w-bnj17 30005 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-bnj17 30006 This theorem is referenced by:  bnj1040  30294  bnj1128  30312
 Copyright terms: Public domain W3C validator