Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1128 Structured version   Visualization version   GIF version

Theorem bnj1128 30312
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1128.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1128.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1128.3 𝐷 = (ω ∖ {∅})
bnj1128.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1128.5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1128.6 (𝜃 ↔ (𝜒 → (𝑓𝑖) ⊆ 𝐴))
bnj1128.7 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
bnj1128.8 (𝜑′[𝑗 / 𝑖]𝜑)
bnj1128.9 (𝜓′[𝑗 / 𝑖]𝜓)
bnj1128.10 (𝜒′[𝑗 / 𝑖]𝜒)
bnj1128.11 (𝜃′[𝑗 / 𝑖]𝜃)
Assertion
Ref Expression
bnj1128 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑛,𝑦   𝐷,𝑖,𝑗,𝑦   𝑅,𝑓,𝑖,𝑗,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝑓,𝑌,𝑖,𝑛,𝑦   𝜒,𝑗   𝜑,𝑖,𝑦   𝜃,𝑗
Allowed substitution hints:   𝜑(𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝜏(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑛)   𝑋(𝑗)   𝑌(𝑗)   𝜑′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜓′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜃′(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1128
StepHypRef Expression
1 bnj1128.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1128.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1128.3 . . . 4 𝐷 = (ω ∖ {∅})
4 bnj1128.4 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
5 bnj1128.5 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
61, 2, 3, 4, 5bnj981 30274 . . 3 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)))
7 simp1 1054 . . . . . 6 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝜒)
8 simp2 1055 . . . . . 6 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝑖𝑛)
9 bnj1128.7 . . . . . . . . 9 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
10 nfv 1830 . . . . . . . . . . . . . . 15 𝑗 𝑖𝑛
11 nfra1 2925 . . . . . . . . . . . . . . . 16 𝑗𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃)
129, 11nfxfr 1771 . . . . . . . . . . . . . . 15 𝑗𝜏
13 nfv 1830 . . . . . . . . . . . . . . 15 𝑗𝜒
1410, 12, 13nf3an 1819 . . . . . . . . . . . . . 14 𝑗(𝑖𝑛𝜏𝜒)
15 nfv 1830 . . . . . . . . . . . . . 14 𝑗(𝑓𝑖) ⊆ 𝐴
1614, 15nfim 1813 . . . . . . . . . . . . 13 𝑗((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴)
1716nf5ri 2053 . . . . . . . . . . . 12 (((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴) → ∀𝑗((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴))
183bnj1098 30108 . . . . . . . . . . . . . . . . 17 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
19 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → 𝑖 ≠ ∅)
20 simpr1 1060 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → 𝑖𝑛)
215bnj1232 30128 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑛𝐷)
22213ad2ant3 1077 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑛𝜏𝜒) → 𝑛𝐷)
2322adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → 𝑛𝐷)
2419, 20, 233jca 1235 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))
2518, 24bnj1101 30109 . . . . . . . . . . . . . . . 16 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑗𝑛𝑖 = suc 𝑗))
26 ancl 567 . . . . . . . . . . . . . . . 16 (((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑗𝑛𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
2725, 26bnj101 30043 . . . . . . . . . . . . . . 15 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
28 df-3an 1033 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
2928imbi2i 325 . . . . . . . . . . . . . . . 16 (((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))) ↔ ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
3029exbii 1764 . . . . . . . . . . . . . . 15 (∃𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
3127, 30mpbir 220 . . . . . . . . . . . . . 14 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
32 bnj213 30206 . . . . . . . . . . . . . . . 16 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
3332bnj226 30056 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
34 simp21 1087 . . . . . . . . . . . . . . . 16 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑖𝑛)
35 simp3r 1083 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑖 = suc 𝑗)
36 biid 250 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝐷𝑛𝐷)
37 biid 250 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑛𝑓 Fn 𝑛)
38 bnj1128.8 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑′[𝑗 / 𝑖]𝜑)
39 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑗 ∈ V
40 sbcg 3470 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ V → ([𝑗 / 𝑖]𝜑𝜑))
4139, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ([𝑗 / 𝑖]𝜑𝜑)
4238, 41bitr2i 264 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝜑′)
43 bnj1128.9 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜓′[𝑗 / 𝑖]𝜓)
442, 43bnj1039 30293 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
452, 44bitr4i 266 . . . . . . . . . . . . . . . . . . . . . 22 (𝜓𝜓′)
4636, 37, 42, 45bnj887 30089 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
47 bnj1128.10 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒′[𝑗 / 𝑖]𝜒)
4838, 43, 5, 47bnj1040 30294 . . . . . . . . . . . . . . . . . . . . 21 (𝜒′ ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
4946, 5, 483bitr4i 291 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜒′)
5048bnj1254 30134 . . . . . . . . . . . . . . . . . . . 20 (𝜒′𝜓′)
5149, 50sylbi 206 . . . . . . . . . . . . . . . . . . 19 (𝜒𝜓′)
52513ad2ant3 1077 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑛𝜏𝜒) → 𝜓′)
53523ad2ant2 1076 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝜓′)
54 simp3l 1082 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑗𝑛)
55223ad2ant2 1076 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑛𝐷)
563bnj923 30092 . . . . . . . . . . . . . . . . . . 19 (𝑛𝐷𝑛 ∈ ω)
57 elnn 6967 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑛𝑛 ∈ ω) → 𝑗 ∈ ω)
5856, 57sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑛𝑛𝐷) → 𝑗 ∈ ω)
5954, 55, 58syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑗 ∈ ω)
6044bnj589 30233 . . . . . . . . . . . . . . . . . . 19 (𝜓′ ↔ ∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
61 rsp 2913 . . . . . . . . . . . . . . . . . . 19 (∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
6260, 61sylbi 206 . . . . . . . . . . . . . . . . . 18 (𝜓′ → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
63 eleq1 2676 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = suc 𝑗 → (𝑖𝑛 ↔ suc 𝑗𝑛))
64 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = suc 𝑗 → (𝑓𝑖) = (𝑓‘suc 𝑗))
6564eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = suc 𝑗 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
6663, 65imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑖 = suc 𝑗 → ((𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
6766imbi2d 329 . . . . . . . . . . . . . . . . . 18 (𝑖 = suc 𝑗 → ((𝑗 ∈ ω → (𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))))
6862, 67syl5ibr 235 . . . . . . . . . . . . . . . . 17 (𝑖 = suc 𝑗 → (𝜓′ → (𝑗 ∈ ω → (𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))))
6935, 53, 59, 68syl3c 64 . . . . . . . . . . . . . . . 16 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → (𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
7034, 69mpd 15 . . . . . . . . . . . . . . 15 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
7133, 70bnj1262 30135 . . . . . . . . . . . . . 14 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → (𝑓𝑖) ⊆ 𝐴)
7231, 71bnj1023 30105 . . . . . . . . . . . . 13 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑓𝑖) ⊆ 𝐴)
735bnj1247 30133 . . . . . . . . . . . . . . 15 (𝜒𝜑)
74733ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝑖𝑛𝜏𝜒) → 𝜑)
75 bnj213 30206 . . . . . . . . . . . . . . 15 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
76 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑖 = ∅ → (𝑓𝑖) = (𝑓‘∅))
771biimpi 205 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
7876, 77sylan9eq 2664 . . . . . . . . . . . . . . 15 ((𝑖 = ∅ ∧ 𝜑) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
7975, 78bnj1262 30135 . . . . . . . . . . . . . 14 ((𝑖 = ∅ ∧ 𝜑) → (𝑓𝑖) ⊆ 𝐴)
8074, 79sylan2 490 . . . . . . . . . . . . 13 ((𝑖 = ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑓𝑖) ⊆ 𝐴)
8172, 80bnj1109 30111 . . . . . . . . . . . 12 𝑗((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴)
8217, 81bnj1131 30112 . . . . . . . . . . 11 ((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴)
83823expia 1259 . . . . . . . . . 10 ((𝑖𝑛𝜏) → (𝜒 → (𝑓𝑖) ⊆ 𝐴))
84 bnj1128.6 . . . . . . . . . 10 (𝜃 ↔ (𝜒 → (𝑓𝑖) ⊆ 𝐴))
8583, 84sylibr 223 . . . . . . . . 9 ((𝑖𝑛𝜏) → 𝜃)
863, 5, 9, 85bnj1133 30311 . . . . . . . 8 (𝜒 → ∀𝑖𝑛 𝜃)
8784ralbii 2963 . . . . . . . 8 (∀𝑖𝑛 𝜃 ↔ ∀𝑖𝑛 (𝜒 → (𝑓𝑖) ⊆ 𝐴))
8886, 87sylib 207 . . . . . . 7 (𝜒 → ∀𝑖𝑛 (𝜒 → (𝑓𝑖) ⊆ 𝐴))
89 rsp 2913 . . . . . . 7 (∀𝑖𝑛 (𝜒 → (𝑓𝑖) ⊆ 𝐴) → (𝑖𝑛 → (𝜒 → (𝑓𝑖) ⊆ 𝐴)))
9088, 89syl 17 . . . . . 6 (𝜒 → (𝑖𝑛 → (𝜒 → (𝑓𝑖) ⊆ 𝐴)))
917, 8, 7, 90syl3c 64 . . . . 5 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → (𝑓𝑖) ⊆ 𝐴)
92 simp3 1056 . . . . 5 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝑌 ∈ (𝑓𝑖))
9391, 92sseldd 3569 . . . 4 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝑌𝐴)
94932eximi 1753 . . 3 (∃𝑛𝑖(𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → ∃𝑛𝑖 𝑌𝐴)
956, 94bnj593 30069 . 2 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖 𝑌𝐴)
96 19.9v 1883 . . 3 (∃𝑓𝑛𝑖 𝑌𝐴 ↔ ∃𝑛𝑖 𝑌𝐴)
97 19.9v 1883 . . 3 (∃𝑛𝑖 𝑌𝐴 ↔ ∃𝑖 𝑌𝐴)
98 19.9v 1883 . . 3 (∃𝑖 𝑌𝐴𝑌𝐴)
9996, 97, 983bitri 285 . 2 (∃𝑓𝑛𝑖 𝑌𝐴𝑌𝐴)
10095, 99sylib 207 1 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  Vcvv 3173  [wsbc 3402  cdif 3537  wss 3540  c0 3874  {csn 4125   ciun 4455   class class class wbr 4583   E cep 4947  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   trClc-bnj18 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fn 5807  df-fv 5812  df-om 6958  df-bnj17 30006  df-bnj14 30008  df-bnj18 30014
This theorem is referenced by:  bnj1127  30313
  Copyright terms: Public domain W3C validator