Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1293 Structured version   Visualization version   GIF version

Theorem bnj1293 30141
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1293.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj1293 𝐴𝐶

Proof of Theorem bnj1293
StepHypRef Expression
1 bnj1293.1 . 2 𝐴 = (𝐵𝐶)
2 inss2 3796 . 2 (𝐵𝐶) ⊆ 𝐶
31, 2eqsstri 3598 1 𝐴𝐶
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∩ cin 3539   ⊆ wss 3540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554 This theorem is referenced by:  bnj1253  30339  bnj1286  30341  bnj1280  30342  bnj1296  30343
 Copyright terms: Public domain W3C validator