Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sb2v | Structured version Visualization version GIF version |
Description: Version of sb2 2340 with a dv condition, which does not require ax-13 2234. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sb2v | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2041 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
2 | equs4v 1917 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | df-sb 1868 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | 1, 2, 3 | sylanbrc 695 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1473 ∃wex 1695 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-sb 1868 |
This theorem is referenced by: bj-stdpc4v 31942 bj-sb3v 31944 bj-hbs1 31946 bj-hbsb2av 31948 bj-equsb1v 31950 bj-sb6 31955 |
Copyright terms: Public domain | W3C validator |