Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-stdpc4v | Structured version Visualization version GIF version |
Description: Version of stdpc4 2341 with a dv condition, which does not require ax-13 2234. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-stdpc4v | ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → 𝜑)) | |
2 | 1 | alimi 1730 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
3 | bj-sb2v 31941 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-sb 1868 |
This theorem is referenced by: bj-2stdpc4v 31943 bj-sbftv 31951 bj-sbfvv 31953 bj-sbtv 31954 bj-vexwvt 32050 bj-ab0 32094 |
Copyright terms: Public domain | W3C validator |